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1. Introduction

There has been much interest in obtaining cosmological inflation from string theory. Gener-

ically such attempts have problems obtaining a Minkowski vacuum and stabilising the mod-

uli fields. The KKLMMT scenario [1, 2] stabilises the volume modulus and it is therefore

interesting to study the properties of this model. Typically brane inflation models give rise

to lower dimensional branes, which are formed at the end of inflation, with the formation

of cosmic strings being generic [3, 4]. In this paper we will study the cosmic strings that

form at the end of inflation, for a review see [5, 6].

The D3/D7 version of the KKLMMT model [7, 8] gives rise to a potential for the

bosonic scalars known as a P-term potential. This is an N=2 supersymmetric potential

constructed from the triplet of auxiliary fields Pi which are given a vev by a triplet of

Fayet-Iliopoulos (FI) terms ξi. This potential has the property that if we truncate to N=1

supersymmetry the potential can look like a D-term potential, an F-term potential or a
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mix of the two depending on the direction of ξi. P-term models were introduced in [9] with

a global SU(2, 2|2) superconformal gauge theory where they correspond to a dual gauge

theory of supersymmetric D3/D7 branes [10]. This is broken to N=2 supersymmetry

by giving a vev to Pi, which corresponds to a magnetic flux triplet in the D3/D7 brane

construction.

It is not straightforward to construct a P-term model in supergravity. It was thought

that it was not possible to include the triplet of FI terms in N=2 supergravity, however

in [11] we demonstrated that this could be done. In this paper we construct the potential

in the more familiar language of N=1 supersymmetry where the second supersymmetry

arises for a particular tuning of the parameters. However local N=1 supersymmetry with

an FI term requires an R-symmetry; the superpotential must be invariant under the R-

symmetry and charged under the U(1) associated with the FI term [12 – 15]. This means

the charges of the scalar fields in the superpotential must be different in supergravity to

their supersymmetric values which has consequences for the construction of P-term models

in supersymmetry, as we will see in section 2.

This paper examines the topological defects that form in P-term potentials, in par-

ticular whether they are permitted by current cosmological constraints. Simple P-term

potentials have a supersymmetric minimum with an S1 degeneracy which means that

Nielsen-Olesen (NO) cosmic strings can form by the Kibble mechanism [16], however such

strings typically have too high a string tension to agree with observations. We also consider

the P-term model when a second set of charged chiral multiplets are included such that

there is an SU(2) global symmetry between the scalar multiplets. This is known as the

semi-local model. Semi-local strings are not topologically stable and as a result they do

not conflict with observations. Semi-local strings appear when global and gauge symme-

tries coexist in a model, they were shown to arise in the developed D3/D7 brane inflation

model [7], where the effective potential was P-term.

Section 2 reviews the P-term model in supersymmetry and how the charges of the fields

change when we move to supergravity. In section 3 we find the general P-term form of the

Bogomol’nyi equations which determine the field profiles for NO and semi-local strings.

We find the asymptotic behaviour of both types of string at the core of the string and also

at infinity. From this we find the string tension which can be compared with the allowed

value determined by observations. In section 3.2 we also discuss the stability properties of

semi-local strings which mean that they can avoid this bound.

In section 4 we discuss the zero modes that can exist on the strings. We give the

supersymmetry transformations for all the fermions and then in 4.1 we discuss the index

theorem for counting fermionic zero modes in supergravity [17]. In 4.2 we discuss D-term

strings which are an exceptional case because of their BPS nature, and in 4.3 we discuss F-

term strings and generic P-term strings. In section 5 we discuss inflation in these potentials.

Again because of their different properties we treat the generic P-term case and the D-term

case in sections 5.1 and 5.2 respectively. We conclude in section 6.

– 2 –



J
H
E
P
1
1
(
2
0
0
7
)
0
2
3

2. The P-term model

We begin with a description of the P-term potential in the language of N=1 supersymmetry.

Take a theory which contains three chiral multiplets with charges 0,+1,-1, and a vector

multiplet and arrange the two charged scalar fields into a multiplet of charge +1

h =

(

φ+

φ∗
−

)

(2.1)

and define

Pi = h†σih − ξi (2.2)

Pi are the triplet of auxiliary fields, or moment maps, of the N=2 theory and ξi is a constant

FI three vector [9]. The superpotential and D-term are

W =
βφ0

2
(P1 − iP2)

= βφ0

(

φ+φ− − 1

2
(ξ1 − iξ2)

)

(2.3)

D =
g

2
P3

=
g√
2
(|φ+|2 − |φ−|2 − ξ3) (2.4)

where β = g/
√

2. Tuning the parameters in this way makes the masses of the vector

and scalar particles equal, and it is in this limit that the second supersymmetry, which is

anti-chiral, emerges [18]. A P-term potential in N=1 supersymmetry contains constant FI

terms in the superpotential and the D-term.

The scalar potential is constructed from the superpotential and D-term as V = |∂W |2+
g2

2 D2

V =
g2

8

3
∑

i=1

(h†σih − ξi)
2 +

g2

2
|φ0|2h†h (2.5)

φ0 is the scalar in the uncharged chiral multiplet, g is a gauge coupling constant, and σi

are the Pauli matrices. If ξ1 = ξ2 = 0 this potential is the super-Bogomol’nyi limit1 of

a D-term potential; if ξ2 = ξ3 = 0 this is the Bogomol’nyi limit of an F-term potential.

The field profiles and zero modes of F- and D-term cosmic strings in supersymmetry are

discussed in [19]. We split the three vector ξi into the product of a rotational part described

by a SO(3) matrix R and a magnitudinal part (0, 0, ξ)

ξi = (R−1)ijδj3ξ (2.6)

so all P-term potentials are described by rotations from the D-term case. The class of

P-term potentials is parameterised by two Euler angles; ψ, θ, and the magnitude of the FI

vector; ξ. Our conventions for Euler angles are given in appendix A.

1As defined in [18]
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The semi-local model includes a second pair of charged scalars such that there is an

SU(2) global symmetry amongst the charged fields. The supersymmetric scalar potential

becomes

V =
g2

8

3
∑

i=1

(h†σih + h̃†σih̃ − ξi)
2 +

g2

2
|φ0|2(h†h + h̃†h̃) (2.7)

Semi-local strings have different stability properties to NO cosmic strings, and they there-

fore avoid some of the cosmological constraints that NO strings are subject to.

The potentials (2.5) and (2.7) have two types of minima; one when |φ0| = 0 and the

charged fields take fixed vevs, the other when the charged fields vanish and |φ0|2 > ξ/2.

The first minimum preserves the supersymmetry the second breaks it. This is the vacuum

structure required for hybrid inflation [20].

After lifting the theory to supergravity we want to be able to make comparisons with

observations, hence we embed the P-term model in N=1 supergravity ignoring the second

supersymmetry [10]. If a U(1) gauge theory with an FI term is to be consistently coupled

to N=1 supergravity in a way that preserves gauge invariance the superpotential must be

invariant under the R-symmetry but transform under the U(1) symmetry. This alters the

charges of the fields appearing in the superpotential. In supersymmetry the scalar fields

φ±, φ0 have charges Q± = ±1, Q0 = 0, and the superpotential is uncharged. In the

supergravity version of the P-term model the fields have charges

qi = Qi − ρi
ξ

M2
P

,
∑

ρi = 1 (2.8)

As MP → ∞ we regain qi = Qi, indeed with a generic choice of superpotential the charges

always return to their supersymmetric values in this limit. MP → ∞ is known as the rigid

limit of supergravity [15] and describes supersymmetry in a curved space-time. Unless

the rigid limit is being considered it no longer makes sense to combine φ+, φ∗
− into the

multiplet (2.1). A P-term model in N=1 supergravity has the following superpotential and

D-term

W =
gφ0√

2

(

φ+φ− − 1

2
(ξ1 − iξ2)

)

(2.9)

D =
g√
2
(q0|φ0|2 + q+|φ+|2 + q−|φ−|2 − ξ3) (2.10)

P-term potentials were constructed in [11] directly in N=2 supergravity where each com-

ponent of the moment map Pi contained a constant term. Following [21] this was done

by considering the truncation to N=1 supergravity where FI terms were present in the

D-term and superpotential of the reduced N=1 supergravity theory. Terms involving the

uncharged scalar field were found in the D-term as a result of the non-Abelian gauging of

the N=2 theory needed to produce a P-term potential. This should be compared with the

presence of the q0|φ0|2 term in (2.10).

3. Field profiles for P-term strings

Cosmic strings are one dimensional topological defects which form at the end of hybrid

inflation for P-term potentials. We shall consider the form of NO strings, which form
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when there are two charged chiral multiplets in the model, and semi-local strings, which

form when a second set of charged chiral fields are included. In our discussion of cosmic

strings we will use the supersymmetric P-term potential as the vevs of the scalar fields are

always very far from the Planck scale so the supergravity corrections to the potential are

negligible.

3.1 NO strings

We present here a unified formalism for NO strings forming in P-term potentials. The most

general metric for a straight, static string [22] is

ds2 = dt2 − dz2 − dr2 − C2(r)dθ2 (3.1)

The string energy integral can be written as a sum of positive semidefinite terms and a

surface integral term [23],

µstring =

∫

drdθ C

(

1

2

∣

∣

∣

∣

(

Dr + i
1

C
Dθ

)

(Uh)1

∣

∣

∣

∣

2

+
1

2

∣

∣

∣

∣

(

Dr + i
1

C
Dθ

)

(Uh)∗2

∣

∣

∣

∣

2

+
1

2
(B − g

2
(h†U †σ3Uh − ξ))2 +

g2

8
(h†U †σ2Uh)2 +

g2

8
(h†U †σ1Uh)2

+
g2

2
|φ0|2|Uh|2 +

1

C
(∇× J)z

)

(3.2)

where the last term can be rewritten as a surface integral at infinity. Dµ is a covariant

derivative Dµφi = (∂µ − igQiAµ) φi, Aµ is the gauge potential, Fµν is the corresponding

gauge field, and B = F12.

Jµ =
1

2
i
(

(Dµ(Uh)†)(Uh) − (Uh)†Dµ(Uh)
)

+ gAµξ (3.3)

and U is the SU(2) rotation related to the SO(3) rotation R, which is given in terms of Euler

angles in appendix A. It is possible to relate Jµ to the gravitino potential; by choosing the

trivial Kähler potential

K =
|φ+|2 + |φ−|2 + |φ0|2

M2
P

(3.4)

the gravitino potential is AB
µ = Jµ/M2

P . The minimum value for µstring is obtained when

each of the squared terms in (3.2) vanishes, these conditions are know as the Bogomol’nyi

equations. In particular they require

(Uh)2 ≡ 0 (3.5)

If the Bogomol’nyi equations are satisfied the Einstein equation becomes

C ′ +
1

M2
p

Jθ = const (3.6)

The most general form of h for a straight, static, infinite cosmic string lying along the

z axis is

h ≡
(

φ+

φ∗
−

)

= einθ

(

f(r)

ei∆h(r)

)

(3.7)
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where f(r) and h(r) are real functions of the radial coordinate and ∆ is a real constant.

Without loss of generality we take n, the winding number of the string, to be positive.

Thus (3.5) gives

ah(r) = bei∆f(r) (3.8)

where a = ei(φ+ψ)/2 cos(θ/2) and b = iei(φ−ψ)/2 sin(θ/2) are Cayley-Klein parameters of

the rotation. The most general form of the gauge potential is

Ar = 0, Aθ =
nα(r)

g
(3.9)

so that B = nα′(r)/gC(r). The boundary conditions for these fields are

C(0) = 0 C ′(0) = 1

f(0) = 0 f(∞) = |a|ξ 1

2

α(0) = 0 α(∞) = 1

(3.10)

to ensure that the string energy is finite at infinity and non singular at the origin. In

terms of these fields the Bogomol’nyi equations describing the minimum string energy field

configuration are

f ′ − n

C
(1 − α)f = 0 (3.11)

nα′

gC
=

g

2

(

f2

|a|2 − ξ

)

(3.12)

and the Einstein equation becomes

1 = C ′ +
nf2(1 − α)

M2
P |a|2

+
nαξ

M2
P

(3.13)

It is straightforward to rewrite these equations if a = 0. There are no known exact solution

to these equations in the general case but the behaviours of the fields in the small and large

r limits can be examined: As r → ∞

f(r) → |a|
√

ξ (3.14)

α(r) → 1 (3.15)

C(r) →
(

1 − nξ

M2
P

)

r (3.16)

and close to the origin

C(r) = r + O(r2) (3.17)

f(r) = βnrn + O(rn+1) (3.18)

α(r) =
−ξg2

4n
r2 + O(r3) (3.19)

where βn is a constant.
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If the fields are in the Bogomol’nyi configuration we can compute the minimum energy

of the string. The resulting string tension is

Gµstring =
nξ

4M2
P

(3.20)

for all P-term models. Current estimates of the string tension give Gµ ∼ 10−7 [24], which

would mean that

ξ ∼ 10−7M2
P (3.21)

if n is of order one. We will see in section 5 that this disagrees with the bounds on ξ coming

from observations of the angular power spectrum.

3.2 Semi-local strings

The potential for semi-local strings was given in equation (2.7), in what follows we give a

unified description of semi-local strings in P-term potentials. Repeating the same analysis

as for the NO case we find that the field profiles are very similar to those of the NO string.

However semi-local strings are unstable due to a degeneracy in the equations, and so unlike

NO strings we would not expect any semi-local strings formed at the end of inflation to

have survived long enough to affect cosmological observations.

The string energy in the semi-local model takes the same form as in the NO case,

but with the semi-local potential (2.7), and with kinetic terms for the tilded charged scalar

fields. Performing the same rearrangement as in the NO case produces a set of Bogomol’nyi

equations for the fields:

(

Dr + i
1

C
Dθ

)

(Uh)1 = 0

(

Dr + i
1

C
Dθ

)

(Uh̃)1 = 0 (3.22)

(

Dr + i
1

C
Dθ

)

(Uh)∗2 = 0

(

Dr + i
1

C
Dθ

)

(Uh̃)∗2 = 0 (3.23)

B − g

2
(h†U †σ3Uh + h̃†U †σ3Uh̃ − ξ) = 0 (3.24)

(Uh)2 = 0, (Uh̃)2 = 0, |φ0| = 0 (3.25)

The Einstein equation is

C ′ + AB
θ = 1 (3.26)

where the constant is determined by the boundary conditions. The most general form of

the bosonic profiles for a straight cosmic string satisfying (3.25) is

h = einθf1(r)
a∗

(

a∗

b∗

)

h̃ = eimθf2(r)
a∗

(

a∗

b∗

)

(3.27)

m is an arbitrary integer and without loss of generality we set m ≤ n so that n is the

winding number of the string. The form of the gauge field is given in (3.9). Again it is

– 7 –
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straightforward to rewrite the equations if a = 0. The Bogomol’nyi and Einstein equations

become;
(

∂r −
n

C
(1 − α)

)

f1 = 0 (3.28)
(

∂r −
1

C
(m − nα)

)

f2 = 0 (3.29)

nα′

gC
− g

2

(

f 2
1

|a|2 +
f 2
2

|a|2 − ξ

)

= 0 (3.30)

1

M2
P |a|2

(f 2
1 (n − nα) + f 2

2 (m − nα)) +
nαξ

M2
P

= 1 − C ′ (3.31)

To ensure the finiteness and regularity of the string energy the boundary conditions are

C(0) = 0 C ′(0) = 1 (3.32)

f1(0) = 0 f2(0) = f0δm0 (3.33)

α(0) = 0 α′(∞) = 0 (3.34)

f 2
1 (∞) + f 2

2 (∞) = |a|2ξ (3.35)

where f2 is allowed to be non-zero at the origin if m = 0, which is a scalar condensate

at the core of the string. However f1(r) and f2(r) are not independent functions, (3.28)

and (3.29) can be combined to give

∂

∂r
ln

(

f2

f1

)

=
m − n

C
(3.36)

For the Bogomol’nyi equations to hold with m ≤ n equation (3.36) requires that as

r → ∞

f2
1 (r) → ξ|a|2 (3.37)

f2
2 (r) → 0 (3.38)

and hence

α(r) → 1 (3.39)

C(r) → r

(

1 − nξ

M2
P

)

(3.40)

Notice that the form of the metric at large r, and hence the deficit angle of the string,

is unchanged from that of an NO string. For the fields to be finite at the origin requires

m,n ≥ 0. At small r

f1(r) = βnrn + O(rn+1) (3.41)

f2(r) = γmrm + O(rm+1) (3.42)

C(r) = r + O(r2) (3.43)

α(r) =
−ξg2

4n
r2 + O(r3) (3.44)
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If the fields are in the Bogomol’nyi configuration the string tension is

Gµstring =
ξn

4M2
P

(3.45)

which is the same as the NO case (3.20). However this does not conflict with observations

as semi-local strings are unstable. As shown in [25 – 27] for any mode with m < n there is

a degeneracy in the solutions to the Bogomol’nyi equations; that is the solutions to (3.36)

are a one parameter family of defects which all have the same energy. Any solution can

interpolate between an NO string and a CP 1 lump with no cost in energy. In other words

the flux along the string is not confined within a tube of any particular radius and for any

semi-local string generic perturbations will excite degenerate modes which will force the

size of the flux tubes to ever larger values. Therefore although semi-local strings may have

formed at the end of inflation, they would have been transitional and would have rapidly

decayed away.

This degeneracy was invoked in [28] to produce a model of D-term inflation which

did not give rise to cosmic strings. The same property means that a model of P-term

inflation can be constructed which also does not conflict with observations. Infinite semi-

local strings were expected to be unlikely to form in our universe for a different reason

in [7]. Here it was thought that the probability of producing an infinite semi-local string

from short segments would be small.

4. Zero modes

Fermionic zero modes are a common feature of cosmic strings in supersymmetry and they

alter the resulting cosmology of a model because they give rise to currents on the string. The

fermions present in our system are four charged chiral fields χ+, χ−, χ̃+ and χ̃−, a chargeless

chiral field χ0, a gaugino λ and a gravitino ψµL. The supergravity transformations of the

fermions are

δ(χ±) =
1

2

(

σrDr +
1

C
σθDθ

)

φ±ǭ (4.1)

δ(χ̃±) =
1

2

(

σrDr +
1

C
σθDθ

)

φ̃±ǭ (4.2)

δχ0 =
−g

2
((P1)

2 + (P2)
2)

1

2 l1ǫ (4.3)

δλ = i
(

σ3B +
g

2
P3 l1

)

ǫ (4.4)

δψµL =

(

∂µ +
1

4
ωab

µ σab +
1

2
iAB

µ

)

ǫL (4.5)

where Pµ is defined in equation (2.2). Note that if U = l1, which gives D-term strings, the

system is half-BPS; half of the fermion transformations vanish.

In supersymmetry, when the gravitino is absent, it has been shown [17] that generic

D-term strings have 2n modes of positive chirality and no modes of negative chirality.

– 9 –
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However D-term strings are normally studied away from the Bogomol’nyi limit. In the P-

term model there are actually two supersymmetries present [18], the second supersymmetry

is anti-chiral and gives 2n zero modes of negative chirality and no modes of positive chirality.

So in total in the Bogomol’nyi limit where there are two supersymmetries present a D-term

model has 2n zero modes of each chirality. This is expected as N=2 supersymmetry is not

chiral. F-term strings have 2n modes of each chirality, and so we would expect to find 2n

zero modes of each chirality for a P-term string in supersymmetry.

4.1 The index theorem

We will use the index theorem of [17] to calculate the number of fermionic zero modes

of P-term cosmic strings in N=1 supergravity. An important consideration is whether or

not the strings are BPS, as this changes the way the index theorem is calculated because

the mass matrix becomes block off diagonal. Therefore when counting the zero modes of

P-term cosmic strings we have to consider the D-term case separately. In what follows we

describe how to compute the number of zero modes for BPS strings as an example of how

the index theorem is formulated. The general case proceeds in a similar way and for full

details we refer the reader to [17].

The number of zero modes of positive and negative chirality is calculated by considering

the normalisability of the fermionic zero modes at the origin and at infinity. In the BPS case

the Dirac mass matrix is block off diagonal with entries in the n1 × n2 upper right corner

and n2 × n1 lower left corner of the matrix. The fermions diagonalise the string generator

such that Tsχ
a = qaχ

a. If qa is the charge of the a-th fermion then we write q
(1)
a = qa

for a = 1 . . . n1 and q
(2)
a = qa+n1

for a = 1 . . . n2. We chose η so that q
(1)
a + η ∈ Z + 1/2

and q
(2)
a − η ∈ Z + 1/2. The number of massless fermions at infinity is nz, the number of

massless fermions with a ≤ n1 is nz1 and the number of massless fermions with a > n1 is

nz2. The number of massive fermions is 2n̄ where n̄ = n1 − nz1 = n2 − nz2.

Given a massless fermion with index a which is not the gravitino we define

q̃
(1)
± = ±1

2
− η ∓

[

C1

2
∓ η

]

(4.6)

if a > n1, or

q̃
(2)
± = ±1

2
+ η ∓

[

C1

2
± η

]

(4.7)

if a ≤ n1, where [x] is the lowest integer which is strictly greater than x. C1 = 1 − nξ and

is related to the deficit angle of the string which is given by δ = 2π(1 − C1).

After gauge fixing the gravitino field has three components, for a cosmic string back-

ground it is convenient to write them in terms of three independent Weyl fermions

Σ = σrψ̄r + σθψ̄θ, Ψ = σrψ̄r − σθψ̄θ, Π = σtψ̄t − σzψ̄z (4.8)

To write the equations of motion for the gravitino in a form suitable for this analysis take

q
(2)
Ψ = qψ ∓ 1, q

(2)
Σ = qψ ± 1, q

(1)
Π = −qψ ± 1 (4.9)
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where qψ = −nξ/2. For a BPS configuration the gravitino is massless so we define

q̃
(1)
Ψ± = ±1

2
− η ∓

[−C1

2
∓ η

]

(4.10)

q̃
(1)
Σ± = ±1

2
− η ∓

[

3C1

2
∓ η

]

(4.11)

By considering the field equations for the gravitino it can be seen that Π is pure gauge and

decouples from the other fields so we can ignore it.

We define q̂
(1)
a to be the set of q

(1)
a and nz2 copies of q̃

(1)
± including q̃

(1)
Ψ± and q̃

(1)
Σ±,

ordered so that q̂
(1)
1 ≤ · · · ≤ q̂

(1)
n̄+nz

. Similarly q̂
(2)
a are the set of the q

(2)
a and nz1 copies of

q̃
(2)
± ordered so that q̂

(2)
1 ≥ · · · ≥ q̂

(2)
n̄+nz

. The number of zero modes of positive and negative

chirality is then given by

N± = 2

n̄+nz
∑

a=1

[±q̂(1)
a ± q̂(2)

a ]+ (4.12)

where [x]+ = x if x ≥ 0 and zero otherwise.

4.2 D-term strings

D-term strings are BPS states so we can apply the index theorem just described. For an

NO string the index theorem says that there are 2(n − 1) zero modes of positive chirality

and no zero modes of negative chirality in supergravity [17]. It was suggested that the

vanishing of two of the zero modes compared to the SUSY result could be a super Higgs

effect [29].

To find the corresponding results for semi-local strings we consider positive and nega-

tive chirality modes separately. The field Σ decouples for positive chirality modes, so we

need only consider the fields χ+, χ−, χ̃+, χ̃−, χ0, λ, Φ. We have n1 = 4, n2 = 3, nz1 = 3

and nz2 = 2. Then

q̂
(1)
1 = q̃

(1)
+ = −1 − qψ, q̂

(2)
1 = qχ0

= −qψ

q̂
(1)
2 = qχ−

= −qψ, q̂
(2)
2 = qλ = qψ

q̂
(1)
3 = qχ̃−

= −qψ, q̂
(2)
3 = q̃

(2)
+ = qψ

q̂
(1)
4 = q̃

(1)
Ψ+ = −qψ, q̂

(2)
4 = q̃

(2)
+ = qψ

q̂
(1)
5 = qχ̃+

= m − qψ, q̂
(2)
5 = q̃

(2)
+ = qψ

q̂
(1)
6 = qχ+

= n − qψ, q̂
(2)
6 = qΨ = −1 + qψ

(4.13)

so that

N+ = 2(m + n − 1) (4.14)

When considering the negative chirality modes Σ does not decouple. We have n1 = 4,

– 11 –



J
H
E
P
1
1
(
2
0
0
7
)
0
2
3

n2 = 4, nz1 = 3 and nz2 = 3. Then

q̂
(1)
1 = qχ−

= −qψ, q̂
(2)
1 = qΨ = 1 + qψ

q̂
(1)
2 = qχ̃−

= −qψ, q̂
(2)
2 = q̃

(2)
− = 1 + qψ

q̂
(1)
3 = q̃

(1)
Ψ− = −qψ, q̂

(2)
3 = q̃

(2)
− = 1 + qψ

q̂
(1)
4 = q̃

(1)
− = −qψ, q̂

(2)
4 = q̃

(2)
− = 1 + qψ

q̂
(1)
5 = q̃

(1)
Σ− = 1 − qψ, q̂

(2)
5 = qχ0

= −qψ

q̂
(1)
6 = qχ̃+

= m − qψ, q̂
(2)
6 = qλ = qψ

q̂
(1)
7 = qχ+

= n − qψ, q̂
(2)
7 = qΣ = −1 + qψ

(4.15)

so that

N− = 0 (4.16)

In total there are 2(n + m − 1) zero modes. As only two of the modes vanish, this seems

to reinforce the idea that there is a super-Higgs effect occurring.

4.3 F-term and P-term strings

For non-BPS strings the gravitino degrees of freedom Σ, and Π do not decouple. As

the mass of the gravitino is non-zero the mass matrix is not block off diagonal and the

index theorem becomes more complicated than that described here. In [17] it was shown

that the inclusion of gravitinos in the analysis of F-term strings means that none of the

global SUSY zero modes survive. Using the index theorem for generic mass matrices gives

N+ = N− = 2, where the extra zero modes arise from the inclusion of the Π gravitino. The

norm of this field is not positive definite which suggests that these may be gauge degrees

of freedom. If we remove the modes coming from Π we get N+ = N− = 0. Exactly the

same argument applies in the semi-local case.

Apart from the D-term case all P-term models have non-vanishing gravitino mass and

the same argument that applies for F-term strings means that there are no zero modes for

a generic P-term model. It is the BPS nature of the D-term case which means that the

zero modes survive the coupling to supergravity.

5. Inflation

The P-term potential has the right vacuum structure to give hybrid inflation. In supersym-

metry the potential has a supersymmetry breaking vacuum when |φ+| = |φ−| = 0 where

V = g2ξ2/8. This is a minimum if |φ0|2 > ξ/2. Once the critical value has been reached

the fields waterfall down into the true minimum where cosmic strings can form. We first

consider a generic P-term potential and then the special case when the FI terms appear

only in the D-term. These two cases must be considered separately as the scalar fields

have different charges in each case. We shall only consider a model containing two charged

chiral multiplets, as moving to a semi-local model makes very little difference for inflation

because during inflation the vevs of the charged fields are zero [28].
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5.1 P-term inflation

If sin θ 6= 0 one of ξ1, ξ2 is non-zero and the combination φ+φ− in the superpotential (2.9)

must be uncharged. We set ρ+ = ρ− = 0 in (2.8) so that

q0 =
−ξ cos θ

M2
P

(5.1)

φ0 is the inflaton and φ+, φ− are the waterfall fields. We assume that the fields φ+ and

φ− are always much less than the Planck mass, so neglecting terms of order |φ±|2/M2
P and

higher the supergravity scalar potential becomes

V =
g2

2
e|φ0|2/M2

P

{

|φ+|2|φ−|2+|φ0|2|φ−|2 + |φ0|2|φ+|2−ξ sin θ(eiψφ+φ−+e−iψφ̄+φ̄−)

+ξ2 sin2 θ

(

1− |φ0|2
M2

P

+
|φ0|4
M4

P

)}

+
g2

2
(|φ+|2−|φ−|2−ξ cos θ)+

g2

2
ξ2 cos2 θ

|φ0|2
M2

P

(|φ0|2
M2

P

+2

)

(5.2)

The full potential is given in appendix B. The direction |φ+| = |φ−| = 0 extremizes the

potential in the φ+, φ− directions and is a minimum if

e2|φ0|2/M2
P (|φ0|4 − 4ξ2 sin2 θ) > 4ξ2 cos2 θ (5.3)

Inflation occurs as the fields roll along this valley. The inflationary potential is

V (|φ0|) =
g2ξ2

2

(

1 + 2
|φ0|2
M2

P

cos2 θ +
|φ0|4
2M4

P

(1 + cos2 θ)

)

(5.4)

The slow roll parameter η is

η = M2
P

V ′′(|φ0|)
V (|φ0|)

(5.5)

=
4 cos2 θ + 6(1 + cos2 θ) |φ0|2

M2
P

1 + 2 |φ0|2

M2
P

cos2 θ + 1
2(1 + cos2 θ) |φ0|4

M4
P

(5.6)

There is a period of slow roll when |η| ≪ 1, as for all models of hybrid inflation ǫ ≪ η.

To get slow roll requires cos2 θ < 1/4, assuming that the inflaton is always less than the

Planck scale. The potential is bounded away from the D-term case. Notice that η is always

strictly positive so the spectral index n ≈ 1 + 2η is always greater than one in this model,

which disagrees with observations [30].

The one-loop corrections to the potential are

∆V =
ξ2g4

16π2
ln

( |φ0|2
Λ

)

(5.7)

where Λ is a symmetry breaking scale. The slow roll equations of motion for the resulting

effective potential are

H2 ≈ g2ξ2

6M2
P

(5.8)

3H
|φ̇0|
MP

=
−g2ξ2

2

(

g2MP

4π2|φ0|
+ 4

|φ0|
MP

cos2 θ + 2
|φ0|3
M3

P

(1 + cos2 θ)

)

(5.9)
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and we require N = 60 efolds of inflation to agree with observations. The solutions to

these equations fall into two classes depending on the relative values of g and θ.

If (1 + cos2 θ)g2 < 8π2 cos4 θ then

|φ0|2N
M2

P

=
A(B + e8A(1+cos2 θ)N )

B − e8A(1+cos2 θ)N
− cos2 θ

1 + cos2 θ
(5.10)

where

A2 =
8π2 cos4 θ − g2(1 + cos2 θ)

8π2(1 + cos2 θ)2
(5.11)

and assuming |φ0|end ≪ |φ0|N

B ≈ cos2 θ + (1 + cos2 θ)A

cos2 θ − (1 + cos2 θ)A
(5.12)

To ensure |φ0|2N is non-negative in (5.10) requires

8 cos2 θ

(

1 − (1 + cos2 θ)g2

16π2 cos4 θ

)

N < 1 (5.13)

which restricts θ and g in the following way

cos2 θ < 4 × 10−3 (5.14)

g2 < 4 × 10−4 (5.15)

Alternatively if (1 + cos2 θ)g2 > 8π2 cos4 θ then

|φ0|2N
M2

P

=
− cos2 θ

1 + cos2 θ
+ A tan

(

4N(1 + cos2 θ)A + arctan

(

cos2 θ

A(1 + cos2 θ)

))

(5.16)

assuming |φ0|end ≪ |φ0|N . Insisting that this is single valued gives

g2 ≤
π4

8N2 + 8π2 cos2 θ

1 + cos2 θ
(5.17)

so 0 ≤ g2 ≤ 15.8.

The COBE normalisation for the density perturbations at horizon crossing [31] is

1

5
√

3π

V 3/2(|φ0|N )

V ′(|φ0|N )
∼ 1.9 × 10−5 (5.18)

If g2(1 + cos2 θ) < 8π2 cos4 θ this requires ξ & 4 × 10−5, and if g2(1 + cos2 θ) > 8π2 cos4 θ

then ξ & 3.4 × 10−6. ξ is always too large to agree with the bounds on the string tension

discussed in section 3.1. Hence NO strings cannot form at the end of inflation, but semi-

local strings are allowed as they are not stable on cosmological timescales.
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5.2 The D-term case

If sin θ = 0 then there are no FI terms in the superpotential and the combination φ+φ− no

longer has to be uncharged; q± 6= Q±. The resulting inflationary potential depends on the

parameter q0 = −ρ0ξ/M
2
P .

The tree level inflationary potential is

V (φ0) =
g2ξ2

2

(

ρ0|φ0|2
M2

P

+ 1

)2

(5.19)

and there exists a period of slow roll with |η| ≪ 1, if |ρ0| < 1/4. The loop corrections are

as in (5.7), so that the slow roll equations are

H2 ≈ g2ξ2

6M2
P

(5.20)

3H
|φ̇0|
MP

=
−g2ξ2

2

(

4ρ2
0

|φ0|3
M3

P

+ 4ρ0
|φ0|
MP

+
g2MP

4π2|φ0|

)

(5.21)

If we make the reasonable assumption g2 < 4π2 these admit the same form of solution as the

first case considered above. For |φ0|2N to be non-negative requires ρ0 < 0. −1/4 < ρ0 < 0

means that the slow roll parameter

η =
4ρ0

(

1 + 3ρ0|φ0|2

M2
P

)

(

1 + ρ0|φ0|2

M2
P

)2 (5.22)

is always negative so the spectral index is less than one in agreement with observations [30].

For the density perturbations to be in agreement with observations requires

ξ & 4.5 × 10−4 (5.23)

Which is again too high to agree with bounds on the string tension for NO strings. However,

semi-local strings could form in the two doublet model, as in [28].

5.3 String formation at the end of inflation

Inflation ends either when the slow roll conditions are violated, or when the field is no

longer rolling in a valley. When the fields leave the valley they waterfall down into the

supersymmetric vacuum, where NO or semi-local strings may form depending on the choice

of model.

It is well known that if NO strings form at the end of hybrid inflation the tension

of the strings is typically too high to agree with observations. However in [32 – 34] it was

shown that for F-term and D-term supersymmetry when the superpotential coupling β and

coupling constant g were detuned, additional radiative corrections were considered and the

fields were allowed to roll near the Planck scale there was a region of parameter space

which allowed both sufficient inflation and NO cosmic strings. It is probable that a similar

analysis when applied to P-term inflation and cosmic strings would find that there was a
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region of parameter space where they were both permitted. However, this detuning would

destroy the underlying supersymmetry. Moving to a semi-local model so that topologically

unstable strings form at the end of inflation means that we can avoid the string tension

constraints without detuning the couplings, thus keeping the underlying supersymmetry

of the theory. In [35] the conflict between inflation and the resulting cosmic strings was

avoided by detuning the couplings and by considering the warm inflation and curvaton

scenarios, but again this would mean breaking the underlying symmetries of the model.

It is possible that the FI terms arise as vevs of fields which are fixed in a compactifi-

cation scheme [36], in which case we do not need to alter the charges of the scalar fields.

However in this case the bounds on ξ are still too large to allow NO strings to be formed

at the end of inflation.

6. Conclusions

P-term potentials have the right vacuum structure to give hybrid inflation and cosmic

strings, however NO cosmic strings have a tension which is too high to agree with obser-

vations of inflation. Moving to a semi-local model means that the strings that form are

unstable and do not conflict with cosmological observations.

We have given the general solutions to the Bogomol’nyi equations for both NO and

semi-local strings in P-term potentials and examined the behaviour of the fields at large

and small distances from the string. All P-term strings have the same energy, which means

that current estimates of the string tension put the same bound on the FI term in all P-term

models. However this is not a problem for semi-local strings because of their instability.

D-term strings are BPS states whereas all other forms of P-term strings break all of

the supersymmetries. This means that in an analysis of the string zero modes the D-term

case must be treated separately from the generic P-term case. In supergravity D-term NO

strings have 2(n − 1) zero modes and D-term semi-local strings have 2(n + m − 1) zero

modes. When compared to the supersymmetry results of 2n and 2(n + m) respectively

this seems to indicate that a super Higgs effect is occurring. For all other types of cosmic

string forming in P-term potentials no zero modes survive the move from supersymmetry

to supergravity.

We expect these cosmic strings to form at the end of a period of hybrid inflation. The

charges of the scalar fields differ in supergravity from the supersymmetry values, which

required a re-analysis of inflation in P-term potentials. It was found that the value of ξ

required to give density perturbations of the right order to agree with observations is too

high to agree with the string tension bound for NO strings. This makes the semi-local

model preferable. In addition we note that only the D-term model of inflation gives a

spectral index which is less than one in agreement with observations.
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A. Euler angles

We use the following parameterisations for an SO(3) rotation in terms of Cayley-Klein

parameters

R =







1
2 (a2 − b∗2 + a∗2 − b2) i

2 (b∗2 − a2 + a∗2 − b2) −ab − a∗b∗

i
2 (a2 + b∗2 − a∗2 − b2) 1

2 (b∗2 + a2 + a∗2 + b2) −i(ab − a∗b∗)

ba∗ + ab∗ i(ba∗ − ab∗) aa∗ − bb∗






(A.1)

which are defined in terms of Euler angles as

a = ei(φ+ψ)/2 cos
θ

2
(A.2)

b = iei(φ−ψ)/2 sin
θ

2
(A.3)

The SU(2) rotation associated with this SO(3) rotation is

U =

(

a b

−b∗ a∗

)

(A.4)

B. P-term supergravity potential

the full supergravity potential can be calculated form

V = eK

(

∣

∣

∣

∣

∂W

∂φi
+

φ∗
i W

M2
P

∣

∣

∣

∣

2

− 3|W |2
M2

P

)

+ D2 (B.1)

With superpotential (2.9) and D-term (2.10) the supergravity potential for bosonic scalars

is

V =
g2

2
eK

{

|φ+φ−|2
(

1 +
|φ0|4
M4

P

)

+ |φ0φ−|2
(

1 +
|φ+|4
M4

P

)

+ |φ0φ+|2
(

1 +
|φ−|4
M4

P

)

+
3|φ0φ+φ−|2

M2
P

−sin θξ(eiψφ+φ−+e−iψφ̄+φ̄−)

(

1+
|φ0|2
M2

P

+
|φ0|2
M4

P

(|φ0|2+|φ+|2+|φ−|2)
)

+(sin θξ)2
(

1 − |φ0|2
M2

P

+
|φ0|2
M4

P

(|φ0|2 + |φ+|2 + |φ−|2)
)}

+
g2

2

(

−ξ cos θ

M2
P

|φ0|2 + |φ+|2 − |φ−|2 − cos θξ

)2

(B.2)
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